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Classical,  interferometric, optical lithography  is diffraction limited to 

writing  features of a size U4 or greater,  where A is  the optical wavelength.  Using 

nonclassical  photon-number  states,  entangled N at  a time, we show that  it is 

possible to write  features of minimum size U(4N) in an N-photon  absorbing 

substrate.  This  result  surpasses  the  usual classical diffraction limit by a factor of 

N .  Since the  number of features  that can be etched on a  two-dimensional surface 

scales inversely as  the  square of the  feature size, this allows one to write  a  factor 

of W more elements on a  semiconductor chip. A factor of N = 2 can be achieved 

easily with  entangled photon pairs  generated from optical parametric  downcon- 

version. 
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Optical masking lithography has been the  primary tool of the  semiconduc- 

tor industry for transferring circuit  images onto substrates to form semiconduc- 

tor chips. However, diffraction edge  effects in  the typical masking  approach limits 

the  minimal resolvable feature size to about the Rayleigh diffraction limit of d/2, 

where il is  the optical wavelength. Hence, it  has become necessary to use  light of 

ever-shorter  wavelengths to fabricate smaller  features.  Current  production 

technology writes 180-220 nm  features  using KrF excimer laser  light  at 248 nm. 

New technological approaches consider light  in  the  vacuum  ultraviolet or soft 

x ray regime in order to obtain features  at 100 nm or below [l].  In  all cases, the 

light is treated  classically or, equivalently, as a stream of uncorrelated pho- 

tons-an approach that leads to the Rayleigh criterion of N 2  as  an  apparently 

inviolable diffraction limit. We shall  demonstrate  that it is possible to overcome 

this limit by using  entangled photons, which have no classical analog. 

A factor of two improvement over the limit of U2 can be achieved using 

classical  interferometric  lithography (CIL) [a]. In CIL, when two coherent plane 

waves of laser  radiation  are  made to intersect  at  an angle of 28, as shown in 

Fig. (l), interference  fringes form with  a  spacing or pitch of p = U2  sin 8. In  the 

grazing incidence limit as 8 -+ d2,  the  minimum  linear  feature size xmln that  can 

be written  is xmin = 1 4 .  To see this, realize that  the normalized exposure dose A at 

the  substrate (proportional to the  intensity) is given by the scaled interference 

pattern of two counter-propagating,  grazing incidence, plane waves, A(%) = 
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1 + cos (2kx)  = 1 + cos q. Here, k = 2 d A  is the optical wavenumber, q = 2kx is  the 

associated path-differential  phase,  and x the  lateral dimension on the  substrate. 

(We shall  assume  the optimal grazing incidence 8 + d 2  for the  rest of this  work.) 

The Rayleigh criterion states  that  the  minimal resolvable feature size occurs at a 

spacing  corresponding to the  distance between an  intensity  maximum  and an  

adjacent intensity minimum [3 ] .  The criterion then  demands (6"" = n, from which 

we obtain xmin = U4, as given  above. This is the best resolution that can be achieved 

classically through  uncorrelated,  single-photon,  interferometric  techniques [2]. 

Recently, Yablonovitch and  Vrijen (YV) have proposed utilizing  classical^' 

two-photon exposure techniques to improve lithographic  resolution. The idea is 

that  uncorrelated (classical) two-photon absorption probability scales quadrati- 

cally with  the  classical  intensity [4]. Hence, in our interferometric  setting,  the 

two-photon exposure dose AZy has  the form, Azr = Az(x)  / 2 = (1+ cosq)' / 2 = 

+ cos q + ;cos 247. This function has a term +cos 247 that oscillates in space with 

twice the frequency as  the single-photon function, A(x) .  If the middle term 

containing  the more slowly oscillating cos q could  somehow be removed, one 

would be left with only the  high  spatial-frequency pattern  term, of resolution 

x? = A / 8. Since the  number of elements  writeable on a  surface  scales quadrati- 

cally with  the  minimum  feature  dimension,  this is an  important advance.  The 

approach of YV is to delete this middle term  using classical frequency modula- 

tion. In the  rest of this work, we  show instead how to employ entangled  photons, 
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in  a  quantum  interferometric  setting, to selectively delete this middle term  and 

achieve a resolution at half the classical diffraction limit. 

It  has been known for some time that entangled photon pairs, such as those 

generated by spontaneous parametric down conversion (PDC) [4], have unusual 

imaging  and resolving characteristics. This  feature allows for sub-shot-noise 

interferometric  phase  measurement  in theory [5,6] and experiment [7]. In  fact, 

Fonseca, e t  al., recently demonstrated resolution of a two-slit diffraction pattern  at 

half the Rayleigh limit  in  a coincidence-counting experiment [7]. What we will 

now  show is  that  this type of effect is possible not only in coincidence experiments, 

but also in  real two-photon imaging  systems  such as those used in  classical 

interferometric  lithography.  In  particular, we  will demonstrate  that  quantum 

entanglement  is  the resource that allows sub-diffraction-limited lithography. 

Consider the schematic  set up for interferometric  lithography,  illustrated 

in Fig. (1). We consider a two-port  device with photons incident on a symmetric, 

lossless, beam splitter from the left in one or both ports A or  B. The photons are 

then reflected by a  mirror  pair (M) onto the imaging  plane of the system at  the 

right.  Without loss of generality, we can model the  phase  differential  due to path- 

length differences between the upper and lower branches of the  interferometer as 

a  single  phase  shifter  (PS) placed in  the upper  branch, which imparts a phase 

shift q = 2hx. The two  photon paths converge on the imaging plane at  an angle of 0 

off the horizontal  axis, as show in the figure. We identify with  the two input  ports 

A and B at  the left, two photon annihilation operators 6 and 6, respectively [6]. 

These operators  and  their  Hermitian conjugates, &+and it, obey the  usual photon 
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commutation rules, [Ci,Ci"] = [b,b"] = 1 and a,b = a, b" = 0. We can take  the  output 
A .  

[̂  ^I [ *  1 
electric field operator at  the image plane on the  right to be proportional to the sum 

of two output  operators ĉ  and 2 from the  upper and lower branches of the 

interferometer, C and D, respectively. Then the  linear  relationship between the 

two inputs  and  the two outputs can be expressed by a  two-dimensional matrix 

equation, f:] = [;I, where  is the  input-output  transfer  matrix. For our 

purposes, T can be thought of as being the product of matrices of the form, 

B=-(  .Jz 1 - 1 i  - J ,  R = (  -1 0 -1 0 1 ,  i.=(" 0 1  '1, 
which represent  the  unitary actions of the symmetric lossless beam splitter (BS), 

the  mirror  pair (M), and  the  phase  shifter (PS), respectively. Here, we have 

assumed  a 7~ phase  shift on each reflection off of a Bs or a  mirror  and  a d 2  phase 

shift upon transmission  through  the BS, as required by reciprocity (time-reversal 

invariance  and  parity conservation) [SI. Without loss of generality, we assume 

that  the  phase differential between the two paths  in Fig. (1) is represented  in  the 

single parameter q~ of the PS. Hence, for the configuration of Fig. (l), we have 

T = PRB. From the  matrix equation relating  input to output, we  now deduce the 
A A A  

output  operators  as ĉ  = (6 - &)ei" / & and 2 = ( 4  + b") / &, with similar  expres- 

sions for their  Hermitian  conjugates. Hence, the  total, scaled, electric-field 

annihilation operator e^, at  the  imaging  plane of the  lithographic  substrate,  is 

given by 
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with  a  conjugate expression for the  creation  operator.  Here,  the entire  path 

differential between the upper  and lower branches is contained  in the phase  factor 

q = 2kx, where x is  the  lateral dimension on the  imaging  plane for grazing 

incidence. Now, to compute the normalized, two-photon, exposure dosage AZy from 

this  quantum optics point of view, it  is sufficient to compute the  quantum 

expectation values of the  moments of G and 6'. In  particular,  the one-, two-, and 

three-photon absorption rates  at  the  imaging  surface will be proportional to the 

expectation values of the following absorption dosing operators, & = , 
A At A' A A 

A 

6, = e  e ee / 2!, and S3 = e  e  e eee / 3!, respectively. The quantum theory of 

uncorrelated two-photon absorption was first worked out in 1931 by Maria 

Goppert-Mayer [9]. More recently, Javanainen  and Gould [lo] reported the 

equivalent theory for entangled two-photon absorption, while Perina,  Saleh,  and 

Teich [ll] developed the  entangled N-photon theory. The general N-photon 

deposition rate  is 

At A t   A t  A A A 

iN = (e^t)N(e^)N / N!  

where the N !  is  a  normalization factor that  arises from the bosonic enhancement 

factor, which is  a  result of the simple fact that  the expectation value 

(NI(6') (&)"IN) = N !  Hence, this normalization  is  required to prevent  the over- 

counting of physically identical absorption processes, whereby N photons are 

N 
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distributed over N virtual  transitions in N !  different ways. All combinations lead 

to the same  final  (single) N-photon absorption process [la]. The expectation values 

are  taken with respect to various  input states  that  are allowed to  enter  the two-port 

system at  the left of Fig. (1). The advantage of this operator-based  approach is that 

all of the  properties of the  interferometer  are encoded into  the  operator form of 

Eq. (2), and one may then use different input  states without  having to recalculate 

the effects of the  interferometer over  for each new input  state [6]. Important for 

this work is  the realization that  the use of entangled photon states  in  interferome- 

ters have been shown to give a sub-shotnoise resolution capability [5-71. What is 

new here  is our recognition that  this  quantum resolution can be directly trans- 

lated  into  a  sub-diffraction-limited  imaging or writing process, such as  that 

employed by optical lithography. 

Let us consider the  input  state Iwl) = I l>,lO), , for which uncorrelated 

photons are incident  one-at-a-time from the left in  the upper-left port A, with 

vacuum  entering  in lower-left port B (see Fig. 1). For this  state we have the 

normalized expected deposition rate of Aly (q)  = (wl lil1 w l )  = 1 - sin q = 1 + cos(q + X ) ,  

which is the  usual classical result,  up to an  unimportant,  constant,  phase  shift. 

(Since the photons are  uncorrelated,  the  interference  pattern  is  the  same  as for, 

say,  a  classical-like  coherent input of the form la)AIO)B, as pointed out in Ref. 7.) 

Notice that A l y ( q )  has  a peak value of two, a  minimum of zero, and  a  mean  value 

of one, which normalizes  the energy deposited per unit  length to unity.  The 

“classical”  (uncorrelated) two-photon deposition rate  is  then  the  renormalized 

square of the one-photon rate, A i y  = (1+ cos q)  / 2 = f + cos q + +cos 2 q ,  where the 2 
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constant  phase factor has been dropped. Recall that we wish to use quantum 

interference to delete the slowly varying middle cosp  term  that  appears  here. A 

simple choice of a  highly  nonclassical  number-product state accomplishes this, 

namely,  the two-photon state I w,) = I 1 ) , 1 1 ) ,  . This  state is the  natural  output of a 

single-photon parametric down-conversion event [4]. The deposition rate on a two- 

photon absorbing substrate for this  state,  in  the  interferometric configuration of 

Fig. (l), has  the form 

as desired. In  other words, the middle term  containing  the more slowly oscillat- 

ing cos p has been deleted, and we are left with only the high-frequency cos 2p 

term  with  the resolution of x p  = A / 8. Fig. (a), we  plot the  classical one-photon 

pattern,  the classical two-photon pattern,  and  the entangled two-photon result. 

To understand  the physics behind this improvement-and the role of 

entanglement-we adapt a simple argument used by Huelga, et  al., in  the context 

of Ramsey, atomic-clock, frequency measurements [13]. (A two-port Mach- 

Zehnder interferometer  is isomorphic to a two-pulse Ramsey atomic-clock 

interferometer, via the SU(2) spinor  rotation  group [5].) Important to note is  the 

form of the  quantum  state inside  the  interferometer  in Fig. (l), after  the  beam 

splitter (BS) but before the phase  shifter (PS), at the points A’ and B’. It is  well 

known that, upon passage  through  a  symmetric, lossless beamsplitter,  the 

product number  state 1 ~ ~ ~ )  = I1),11), becomes an  entangled  number  state of the 
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form I w , )  = (10)A,12)B, + 12)A,10)B,) / &, due to interference at  the  beamsplitter 

itself [5 ] .  Here, the entanglement  is between number  and path; it is not possible to 

tell, even in principal, whether both photons took the lower-most path or both took 

the  upper-most path. This  entangled state  is sometimes called a “diphoton” or a 

“two-photon”, and it behaves as single quantum object of photon number two in  a 

spatially  separated  superposition  state [14]. There are two indistinguishable 

paths-up or  down-this diphoton can  take  through  the  interferometer,  and so 

the  quantum  amplitudes corresponding to these two paths will add  and  interfere. 

However, the diphoton will pass  through  the  phase  shifter only  on the  upper-most 

path,  and hence this amplitude will acquire twice the  phase  shift as with  a single 

photon process. Therefore, it is  easy to see that  the  entangled  state becomes, 

I V E ( 4 )  = ( I 0 ) C P ) D  + e2zqI 2)c10),) / &. Hence, the  entangled  quantum  state  inside 

the  interferometer  accumulates  phase twice as fast as would  occur with an 

uncorrelated photon pair.  This  is  the origin of the doubling of the  resolution, 

found implicitly in  the deposition rate, Eq. (4), which could equally well be 

computed as (y,(q)I(c At + &)‘(E + 2)’l yE(q)) .  It is a  simple matter to show, in 

analogy to the atomic-clock work of Huelga, et al., that if an  entangled photon 

number state of the form 

I ( N ) )  = (I O>A’l N)B‘ +IN)A,10) , , ) /&7 (5)  

is prepared  inside  the  interferometer,  then  the  phase from the  path differential 

accumulates N times  as  fast, producing an entangled state of the form IlyE(N)) = 

(IO),l N ) ,  + e”qIN)cI 0),) / & at  the  output. If the  substrate  in  this case is an N- 
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photon absorbing material,  then  the deposition function a N ,  Eq. (3), has  an 

expectation value  equal to, 

where  all the slowly oscillating terms have been interferometrically deleted from 

the  pattern. This selective deletion of the undesirable cross terms  is a  consequence 

of the  use of nonclassical  number states-a similar  result can not be had  using 

coherent states [7]. The result leaves only the  fastest  varying  term of cos Nq,  

which then  writes a pattern  that  has a feature size resolution of H(4N). This  is  a 

remarkable factor of N below the classical Rayleigh limit of H 4 .  

Of course, the  natural question arises: how can one produce maximally 

entangled photon number states of the form given in Eq. (5)? For the case of N = 2, 

the  answer  is a parametric down-conversion event, followed by a symmetric 

beamsplitter. For higher N ,  there  are  at several possibilities. One approach is to 

use  a material  with a  nonlinearity,  in which a  single photon is downcon- 

verted into N entangled  daughter  photons, as discussed by Perina,  Saleh  and 

Teich [12]. Another approach is to utilize  a cascaded arrangement of N-1 crystals 

with f ' l  nonlinearities [12,16]. It is  interesting to note that  the  natural output of a 

series of parametric downconversion events, or that of an optical parametric 

oscillator (OPO), has  the form IN / 2),1 N / of a Hilbert space product [6,7]. I n  

the case N = 2, a simple linear beam splitter can be used to generated  the 

maximally entangled form of Eq. ( 5 )  from this  state. 
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We make one final important note on the  entangled N-photon absorption 

process. Classically, the  uncorrelated N-photon absorption probability scales like 

IN ,  where I is  the  normalized  classical  intensity.  This result  is a consequence of 

the fact that  the photons arrive independently of each other. Hence, the probability 

that  the  first photon arrives  in  an elemental absorption volume in  space-time is 

proportional to  I ,  and  the probability a second photon will also happen to be in  the 

same volume is also proportional to I ,  and so on, giving the IN law. For this 

reason, N-photon absorption lithography  with  uncorrelated “cla~sical’~ light is 

unfeasible for high N, since extremely high flux densities  are required [12]. This 

is not the  case for N-photon absorption with  entangled photons. Javanainen  and 

Gould first  demonstrated  that for  two-photon absorption with  entangled photon 

pairs,  the absorption cross section scales as I ,  and not the I2  that would be 

expected classically [ll].  Later on, Perina,  Saleh,  and Teich  showed that  this 

holds for arbitrary N, namely, that  the N-photon absorption cross-section, with N 

entangled photons, scales like I and not IN [la]. This result  can be seen by the 

following heuristic  argument: Recall that  the photons are correlated  in space and 

time, as well as  number. Hence, if the optical system is aligned properly, the 

probability of the first photon arriving  in  a  small absorptive volume of spacetime is 

proportional to I .  However, the  remaining N-1 photons are constrained to arrive 

at the  same place at  the  same time,  and so each of their  arrival probabilities is  a 

constant,  independent of I .  Hence, although  classical N-photon lithography 

requires  unrealistically  high optical powers, entangled  N-photon  lithography 

requires only the  same levels of power as  the classical one-photon device. 
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In conclusion, we have discussed the problem of entangled  N-photon 

absorption, as applied to interferometric optical lithography. We conclude that 

maximally entangle photon states, such as  in Eq. (5) ,  can be used to write  features 

in  an N-photon absorbing resist which have  a resolution of W(4N). This result is a 

factor of N below the classical Rayleigh limit.  Such  states can easily be made for 

N = 2 using optical parametric downconversion, and  there  are several possible 

approaches for implementing  the scheme for higher N. It  is  remarkable to note 

that  entanglement  is a useful resource, which can be employed in a technology 

such as  lithography to overcome seemingly unbreakable constraints  such  as  the 

diffraction limit. The classical limit  is not that which is imposed by quantum 

mechanics. 
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FIGURE CAPTIONS 

Fig. 1 The interferometric  lithography  set  up for utilizing photons entering 

ports A and B, entangled two at a  time. The photons strike  the  symmet- 

ric, lossless,  beamsplitter (BS) and  then reflect off the  mirrors (M). The 

photon amplitude  in  the  upper  path  accumulates  at  the  phase  shifter 

(PS)  a  phase  shift q before the two branches  are made to interfere on the 

substrate. 

Fig. 2 This plot compares  the deposition pattern A as a function of the  phase 

shift q for uncorrelated single-photon absorption (dashed),  uncorrelated 

two-photon absorption (dotted), and entangled two-photon absorption 

(solid). Note that the classical two-photon  plot has  narrower  features 

than  the one-photon, but that  the  entangled two-photon has even nar- 

rower features still.  In  addition, the entangled profile also shows the 

critical  halving of the peak-to-peak  separation. 
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